
A generic, schema-driven approach to Flexo Layers 4 + 5

Blake Regalia
OpenMBEE

Generating Flexo APIs & SDKs
for "model" developers

What are the givens?

● Graph-based data store with a self-describing data model
● Extensible microservice architecture
● Very broad ecosystem of tools supporting fractions of the “big picture”
● Existing frameworks and UIs in Layers 5 and 6 already familiar to end-users
● Vendors exposing endpoints using OpenAPI spec

Where are the gaps with reaching “model” developers?

● SPARQL is a steep learning curve
● Graph-based data models and querying are not intuitive to Excel users
● “There is never a one-size-fits-all solution to Linked Data user interfaces” ™
● Post-process-ability, data flexibility, computability

What are some desirable outcomes?

● Ability to fetch “objects” out of MMS-5
● ^^ without writing SPARQL
● ^^ without writing a specific SDK for each vendor, project, data model, etc.
● ^^ without needing to deeply learn/study the schema (i.e., discoverable)
● ^^ without sacrificing substantial query performance
● ^^ without sacrificing substantial query flexibility
● Leveraging mature open-source software
● Maintaining modularity throughout the layer cake stack
● Creating a solution capable of being reused/generalized across regimes

Generic Flexo ingestion: A precedent for success

OpenAPI Graph Extractor facilitates the semantic lifting of (optionally linked)
structured data from a web service described by an OpenAPI document. In
addition to capturing object structure and rich data type information (such as
integer, date-time, etc.), the tool is able to create linked data from services
that use Linked Description Objects as defined by the JSON Hyper-Schema

● Highly reusable & schema-agnostic. No external data dependencies
● Automatically adapts to changes in vendor’s schema
● Minimal configuration needed between redeployments

Objective: a strongly-typed python ORM-like
query client for object retrieval

● Data flexibility, computability
● Discoverable schema (autocomplete)
● Intuitive, chainable operations

Working backwards

● Schema is already fully defined; object shapes are prescribed by vendor
● Maintains the propagation of schema from vendor to client;

forwards-compatible
● Range of query operations is limited, which is ideal; data originates from a

document store model
● Readonly nature (querying / object retrieval) simplifies the ORM. no need for

writing back to data store

Generating the client!?

Generating the API

● Schema is already fully defined; object shapes are prescribed by vendor
● Maintains the propagation of schema from vendor to client;

forwards-compatible
● Service allows generated clients to retrieve objects, handles the

transformation from DSL or ORM query language to SPARQL
● Highly modular; generation is not driven by client. Compatible with multiple

different clients (generated or otherwise)

Exploring the State of the Art

● GraphQL - https://graphql.org/
● graphql-ld - given graphql query & json-ld context, generates sparql query

○ user must know the schema and how to write graphql. no feedback on invalid queries
● semantic object modeling (ontotext) - allows dev to define mappings that

generate graphql schema which can be used to query the triplestore
○ only works with graphdb, commercial licensing only

● ariadne-codegen - given a graphql schema, generates a python client with
ORM-like classes and methods for querying a graphql server

○ client-sided only, no other apparent downsides
● openapi-to-graphql - typescript lib capable of generating graphql schemas

from openapi documents. developed by IBM
○ very opinionated, but configurable thru API

● Other unmaintained projects that attempted to bridge RDF and GraphQL

https://graphql.org/

Putting into practice

● Generate a GraphQL schema based on either an OpenAPI document or
RDF ontology (RDFS+OWL, FOAF, DCT, Schema.org, etc.)

● Create or “fit” a service that transforms GraphQL queries to SPARQL
(against that schema) such that it produces the appropriate bindings

● Generate a strongly-typed python ORM-like query client against the
GraphQL schema

Generated service works as its own GraphQL endpoint, independent of client

Open-source tooling takes care of 80~90% the work above

Jama Case Study

●

